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Abstract 

In this paper we develop some integral formulas for compact space-like hypersurfaces in de Sitter 
space S'I +1 and apply them in order to characterize the totally umbilical round spheres of S'1 '+l as 
the only compact space-like hypersurfaces with constant higher order mean curvature under some 
appropriate hypothesis. In particular, for hypersurfaces contained in the chronological future (or 
past) of an equator ofS~; +l we prove that the only compact space-like hypersurfaces with a constant 
higher order mean curvature are the totally umbilical round spheres. © 1999 Elsevier Science B.V. 
All rights reserved. 
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1. Introduct ion 

The study of space-like hypersurfaces in Lorentzian space-times has been recently of 

substantial interest from both physical and mathematical points of view. From the physical 

one, that interest became clear when Lichnerowicz [10] showed that the Cauchy problem 

of the Einstein equation with initial conditions on a space-like hypersurface with vanishing 

mean extrinsic curvature has a particularly nice form, reducing to a linear differential system 
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of  first-order and to a non-linear second-order elliptic differential equation. We also refer 

the reader to the survey papers [4,11], and references therein for other reasons justifying 

their importance in general relativity. 

From a mathematical point of view, space-like hypersurfaces are also interesting because 

of  their Bernstein-type properties. When the ambient space-time is the de Sitter space 

S~ +l , Goddard [6] conjectured that the only complete space-like hypersurfaces in S~ +j with 

constant mean curvature H should be the totally umbilical ones. Although this conjecture 

has turned out to be false in its original statement, it has motivated a great deal of  work trying 

to find some positive answer under appropriate additional hypotheses. For instance, in [1] 

Akutagawa showed that Goddard's conjecture is true when 0 < H 2 < 1 in the case n = 2, 

and when 0 < H 2 < 4(n - 1) In  2 in the case n > 3. Later, Montiel [12] solved Goddard's 

problem in the compact case proving that the only compact space-like hypersurfaces in 

S~ +1 with constant mean curvature are the totally umbilical round spheres (see also [14] 

for an alternative proof of  both facts in the two-dimensional case). 

On the other hand, Cheng and Ishikawa have recently shown that the totally umbilical 

round spheres are the only compact space-like hypersurfaces in de Sitter space with constant 

scalar curvature S < n (n - 1). Some other authors, such as Li [9] and Zheng [ 17,18], have 

also obtained interesting results related to the characterization of  the totally umbilical round 

spheres as the only compact space-like hypersurfaces in S'~ +l with constant scalar curvature. 

The natural generalization of  mean and scalar curvatures for a space-like hypersurface 

in de Sitter space are the rth mean curvatures /4,- for r = 1 . . . . .  n. Actually, Hj is the 

mean curvature and H2 is, up to a constant, the scalar curvature of  the hypersurface (for the 

details, see Section 2). In this paper we will develop some integral formulas for compact 

space-like hypersurfaces in de Sitter space, which in analogy with the Euclidean case will 

be called Minkowski formulas. We will also obtain some applications of  those integral 

formulas in order to characterize the totally umbilical round spheres in S~ +l as the only 

compact space-like hypersurfaces with constant higher order mean curvature under some 

appropriate hypothesis. For instance, we show (Theorem 3): 

The only compact space-like hypersurfaces in de Sitter space having Hr and H~+l both 

constant, with 0 < r < n - 2, are the totally umbilical round spheres. 

With respect to the case where only one rth mean curvature is constant, our main result is 
(Theorem 7): 

The only compact space-like hypersurfaces in de Sitter space with constant rth mean 

curvature Hr,  2 < r < n, which are contained in the chronological future (or past) of  an 
equator of  S~ +l are the totally umbilical round spheres. 

2. Preliminaries 

Let L n+2 be the (n + 2)-dimensional Lorentz-Minkowski space, n > 2, endowed with 
the Lorentzian metric tensor ( , )  given by 
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n+l  

(v, ~ " 1)i~i -- Vn+2~n+2 ,  

i=l  

and let S~ +] C L "+2 be the (n + 1)-dimensional unitary de Sitter space, i.e., 

SIt ~+i = {x ~ L1'+2: ( x , x )  = 11. 

As is well  known, for n >_ 2 the de Sitter space $1~ +j is the standard simply con- 

nected Lorentzian space form of  constant sectional curvature one. A smooth immersion 

" M 1' > S'I ~+1 C L u+2 of  an n-dimensional  connected manifold M" is said to be a 

space-like hypersurface if  the induced metric via 7' is a Riemannian metric on M".  which, 

as usual, is also denoted by ( , ). 

Throughout this paper we will deal with compact  space-like hypersurfaces in de Sitter 

space. Observe that every such hypersurface ~ : M" > S'~ +1 C L "+2 is diffeomorphic to 

an n-sphere by means of the map F = / 7 o ~ b o ~  • M" > S" ,where  F/ - S" × R  ---* S" is the 

projection onto S" and ~b - I  : S I' × R > S~ +] is given by 4> I(u, v) = ((~/1 + v2)u, v). 

Indeed, F is a local diffeomorphism, and the compactness of M" and the simply connected- 

ness of S I' imply that F is a global one. In particular, every compact  space-like hypersurface 

in de Sitter space is orientable and there exists a time-like unit normal field N globally de- 

fined on M". We will refer to N as the Gauss map of  the immersion and we will say that 

M n is oriented by N. 

Let ~ • M 1' > S'~ +1 C L 1'+2 be an immersed compact  space-like hypersurface in de 

Sitter space ~n+t and let N be its Gauss map. In order to set up the notation, let us denote 
1l 4-9 by V ° V and V the Levi-Civita connections of  L -, S,~+ I and M",  respectively. Then the 

Gauss and Weingarten formulas for M" in S'] +] C L "+2 are given, respectively, by 

V ° x Y  = (gxY  - (X,  Y)~  = V x Y  - ( A X ,  Y ) N  - ( X ,  Y ) ~ ,  (1) 

and 

A ( X )  o = - V x N  = - V x N ,  (2) 

for all tangent vector fields X, Y ¢ X ( M ) ,  where A : X ( M )  > X ( M )  stands for the shape 

operator of M n in St~ +] with respect to N. 

Associated to the shape operator of M n there are n algebraic invariants, which are the 

elementary symmetric functions crr of  its principal curvatures k I . . . . .  k ,  given by 

O'r(kl . . . . .  k,~) = Z kil " " k i "  l < r < n .  
il < '"<i ,  

The rth mean curvature H,. of  the space-like hypersurface is then defined by 

( n ~ H r = ( - 1 ) r c & ( k ,  . . . . .  k , , ) = C ~ r ( - k ,  . . . . .  
\ I F  

When r = 1, HI = - (1 /n)  tr(A) = H is the mean curvature of  M".  The choice of the sign 

( - - 1 )  r in our definition of 11,- is motivated by the fact that in that case the mean curvature 
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vector is given by H = HN. Therefore, H(p) > 0 at a point p 6 M n if and only if H(p)  

is in the time-orientation determined by N(p). 
On the other hand, when r = n, H,7 = ( - 1 )  '7 det(A) defines the Gauss-Kronecker 

curvature of  the space-like hypersurface, and for r = 2, H2 is, up to a constant, the scalar 

curvature S of  M n. Indeed, the Ricci curvature of  M" is given by 

Ric(X, Y) = (n - 1)(X, Y) - tr(A)(A(X), Y) + (A(X), A(Y)), 

for X, Y c X(M), so that its scalar curvature is 

S = tr(Ric) = n(n - 1) - tr(A) 2 + tr(A 2) = n(n - 1)(1 - / - /2 ) .  (3) 

Observe that the characteristic polynomial of  A can be written in terms of  the Hr 's  as 

d e t ( t l - A ) = ~ - ~ ( ~ ) H r t  ''-r, (4) 

r : 0  

where H0 = 1. 

3. Integral formulas 

In this section we will derive some general integral formulas for compact space-like 

hypersurfaces in de Sitter space. In order to do that, we will introduce the corresponding 

Newton transformations Tr " X(M) ~ X(M) arising from the shape operator A, which 

according to our definition of  the rth mean curvatures are given by 

Tr=(n)Hrl+(r r-ln ) H r _ I A + . . . + ( ~ ) H I A r _ I + A , .  ' 

where I denotes the identity in X(M), or inductively, 

T o = l  and T r = ( n ~ H r l + Z T r  1. \/11" 

As a consequence of  (4) it follows that T,~ = 0. Observe that T,- = ( -1 ) rTr ,  where T~ is 

the rth Newton transformation defined by Reilly [15, Section 1]. The following algebraic 

properties of  T~ can be found in [15] (see also [16, Section 4]), 

t r ( T r ) = ( n - r ) ( ~ ) H r ,  (5) 

t r ( A T r ) = - ( r + l ) (  nr+l ) Hr+l,  (6) 

w h e r e 0 < r  < n -  1. 

Let us consider, associated to each Newton transformation T~, 0 < r < n - 1, the 
corresponding second-order differential operator L,. acting on C ~ (M) given by 

L~ (u) = div(Tr (Vu)). 



J.A. Aledo et al. /Journal of Geomet~ and Physics 31 (1999) 195-208 199 

In particular, when r = 0 the operator Lo is nothing but the Laplacian operator of M". 

Using that Vx Tr is self-adjoint for any X ~ 2'(M), an easy computation shows that 

L,.(u) = (div(Tr), Vu) + ~ (Tr(VE~VU), El), (7) 
i=1 

where {El . . . . .  E,, } is a local orthonormal frame on M", and 

I t  

div(T,) = tr(VTr) = Z ( V E ,  Tr)(Ei).  
i=1 

Let us now remark that div(Tr) -~ 0. 

Lemma 1. The Newton transformations Tr are divergence-free. 

Proof. From the inductive definition of T, we have 

() ) Z n (VE~Tr)(Ei) = VHr + (VEsA)(Tr- IEi )  + A (VE, Tr- I ) (Ei )  • 
r 

i = l  i=1 = 

Using now 

tr(T,-_, Vx  A) = - ( 7 ) ( V H ~ , X )  

(see, for instance, [16, Eq. (4.4)]), we obtain from the Codazzi equation 

( V x A ) ( Y )  = ( V y A ) ( X )  

that 

(:) Z ( V E i A ) ( T r - I E i )  = - VHr,  
i=1 

so that 

}-~(vei r r ) (Ei)  = A ( v E i r r - j ) ( E i )  • 
i = l  

An inductive argument implies then that 

,1 

~__,(ve~ rr) (Ei)  = 0 
i=l  

fo r r  = 0  . . . . .  n - 1 .  [] 

From Lemma 1, Eq. (7) becomes 

L,.(u) = Z (T~(VE~VU), El) -=- Tr(Ei, E i )V2u(E i ,  El).  
i=l  i--I 

(8) 
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In particular, when r ---- 1 the operator L1 agrees (up to the sign) with the operator [], 
which was introduced by Cheng and Yau [3]. The operator [] has been recently used for 

the study of space-like hypersurfaces with constant scalar curvature in de Sitter space by 

several authors like Zheng [17,18], Li [9], and Cheng and Ishikawa [2]. 
Let a E L n+2 be a fixed arbitrary vector, and consider the height function (a ,  7*) defined 

on M ' .  From (1) it is easy to see that its gradient is given by V ( a ,  7*) = a T, where 

a T = a + (a,  N ) N  - (a, ¢r)~ (9) 

is tangent to M".  By taking covariant derivative in (9) and using (1) and (2), we obtain from 

V°a = 0 that 

V x a  T = - ( a  , N ) A ( X )  - (a , ¢r)X (10) 

for X ~ 2((M).  Therefore, using (5), (6) and (10) we obtain from (8) that 

Lr( (a ,  ap)) = - ( a ,  7*) tr(T,-) - (a ,  N) t r (aTr)  

= - ( n - r ) ( : ) H r ( a ' ~ ) q - ( r + l ) (  n ) , N )  

= c r ( - H r ( a ,  7t) + Hr+l(a,  N)) ,  (11) 

where cr = (n - r)('~) = (r + 1)(r +l)" Integrating now (11) on M",  the divergence theorem 

implies our integral formulas. 

~In+l tn+2 T h e o r e m  2 (Minkowski formulas). Let ¢t : M" > O l C be a compact space- 

like hypersurface immersed into de Sitter space and let a ~ L "+2 a fixed arbitrary vector. 

For each r = 0 . . . . .  n - 1, the following formula holds: 

f ( - H r ( a ,  + N))  dV  O, 7,) Hr+l(a,  

M 

where dV is the n-dimensional volume element o f  M n with respect to the induced metric 

and the chosen orientation. 

Our proof of Minkowski formulas here follows the ideas of  Reilly [15] (see also [16]). 
In Appendix A, we will present another proof of  these Minkowski formulas which uses the 
original ideas of Hsiung [8] in his proof of  Minkowski formulas for compact hypersurfaces 
in Euclidean space (see also [13] for a more accessible modem treatment). We would like 
to include also that other proof in Appendix A because of its nice geometric feeling. 

4. First applications 

As a first application of Minkowski formulas, if the mean curvature Hi is constant, 
multiplying by the constant Hi the first Minkowski formula (for r = 0) and subtracting the 
second one (for r = 1), we obtain that 
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f ( H  I - H2)(a ,  dV 0. (12) N) 

M 

Observe that, by Cauchy-Schwarz inequality, we have 

_ _ 1  ,1 k 2 _ _1 ki > 0 
H? - ~ -- n(n - 1) i n - 

i=l 

equality holding only at umbilical points. Therefore, if we choose a E L n+2 a unit time-like 

vector in the same time-orientation as N, then {a, N) < - 1  < 0 and from (12) we deduce 

that H~ - H2 ~ 0 and the hypersurface must be totally umbilical. This provides us with a 

proof of  the theorem given by Montiel [12]. 

Since H0 = 1 by definition and the only compact space-like hypersurfaces in de Sitter 

space which are totally umbilical are the round spheres, the result by Montiel can be read 

as follows: 

The only compact spacelike hypersuffaces in de Sitter space having H0 and H1 both 

constant are the totally umbilical round spheres. 

The same argument as above can be used to prove the following generalization to any two 

consecutive rth mean curvatures. 

Theorem 3. The only compact space-like hypersurfaces in de Sitter space having Hr and 

H, + I both constant, with 0 < r < n - 2, are the totally umbilical round spheres. 

Proof. Multiplying by the constant Hr+l the integral formula 

f ( - H r ( a ,  ap) + (a,  N ) ) d W  O, H,-+I 
M 

and multiplying by the constant Hr the integral formula 

f (--H,.+l (a, ~ )  + Hr+2(a ,  N ) ) =  dV 0, 

M 

we obtain, subtracting them, that 

(H,7+l -- HrHr+2)(a,  N)  dV  = O. 

M 

It is known (see [7, Theorem 55]) that 

H2+l -- HrHr+2 >_ 0 (13) 

equality holding at umbilical points. Therefore, choosing a 6 L n+2 a unit time-like vector 

in the same time-orientation as N, we deduce as above that the hypersurface must be a 

totally umbilical round sphere. [] 
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5. Hypersurfaces with constant higher order mean curvature 

From now on we will focus on the case where only one r th mean curvature is constant. 

Our objective is to find appropriate conditions under which the totally umbilical round 

spheres are the only compact  space-like hypersurfaces in de Sitter space with Hr constant. 

For r = 1 this is the result given by Montiel  [12]. When r = 2, since H2 is (up to a 

constant) the scalar curvature of  the hypersurface (see Eq. (3)), this corresponds to the case 

of constant scalar curvature. Li [9] has recently shown that when n = 2, the round spheres 

are the only compact  space-like surfaces in S~ with constant scalar curvature, i.e., constant 

Gauss curvature. For the n-dimensional  case, he has also shown that a compact  space- 

like hypersurface in S'~ q-I with constant scalar curvature S satisfying (n - 1)(n - 2) < 

S < n(n - 1) must be a round sphere. Zheng [17] shows that if  a compact  space-like 

hypersurface in s~+l  with non-negative sectional curvature has constant scalar curvature S 

satisfying S <_ n(n - 1) then it must be a round sphere (see also [18] for a weaker version of  

this result). More recently, Cheng and Ishikawa have shown that the round spheres are the 

only compact  space-like hypersurfaces in the de Sitter space with constant scalar curvature 

S < n(n - 1). 

Let ~p : M n > S~ +! C L n+2 be a compact  space-like hypersurface in de Sitter space 

with constant r th mean curvature Hr, 2 < r < n - 1. Let us consider the two following 

Minkowski  formulas: 

f ( - ( a ,  ~) + Hi(a ,  N)) = O, dV 

M 

and 

f ( - H r ( a ,  ~) Hr+l (a, N)) = + dV O. 

M 

If  we mult iply the first one by the constant Hr and subtract the second one, we obtain 

f (Hl Hr - Hr+l)(a, N) = (14) dV O. 

M 

Choosing a ~ L n+2 a unit t ime-like vector in the same time-orientation as N, then (a ,  N) < 

- 1  < 0 .  Therefore, if  we were able to prove that HIHr - Hr+l > O, with equality at the 

umbilical points, we could conclude that the hypersurface should be a totally umbilical 

round sphere. When r = 2 this follows from the assumption tha t / /2  is a positive constant 

or, equivalently (see Eq. (3)), that the scalar curvature S is constant and satifies S < n (n - 1). 

Indeed, by Cauchy-Schwarz  inequality we know that H 2 > //2 > 0, so that Hi does not 

vanish on M n, and by choosing the appropriate orientation, we may suppose that Hi > 0 

on M n. Moreover, from (13) we also know that/-/22 - H1 t/3 > 0, i.e., 

Hi 
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Therefore, we have 

H , H ~ - H ~  > HIH~ H 2 _ H 2 ( H  l _ H 2 )  > 0 ,  
. . . .  /41 HI  

with equality at the umbilical points. This provides us with another proof of  the recent result 
given by Cheng and Ishikawa [2]. 

T h e o r e m  4. Let  ~p : M"  > S'( +1 C L" ~2 be a compac t  space-like hypersurface in de 

Sitter space, n >_ 3, with constant  scalar  curvature S satis~'ing S < n (n - 1 ). Then M"  is 

a totally umbil ical  round sphere. 

Moreover, one of the advantages of  our approach is that it allows us to extend the result 

to the case of  r >__ 3 in the following form. 

Theorem 5. Let  ~ " M n > S~ +1 C L n+2 be a compac t  space-like hypersurface in de 

Sitter space with constant  rth mean curvature H,., 2 < r < n - 1. l f  there exists a point  

Po E M where all the pr incipal  curvatures' ki (Po) have the same sign, then M '~ is a totalh' 

umbil ical  round sphere. 

Proof. Since there exists a point p0 c M where all the principal curvatures have the same 

sign, we may assume, by choosing the appropriate orientation on M " ,  that ki (P0) < 0, 

for i = 1 . . . . .  n. Our objective now is to see that H1H,. - Hr+l > 0 everywhere on M", 

equality holding at the umbilical points. To do that, we will follow the ideas of  Montiel and 

Ros [13, Lemma 1] and their use of Garding inequalities [5]. Actually, from the proof of 

Lemma 1 in [13] and taking into account the sign convention in our definition of  Hi given 

in Section 2, it follows that the constant Hi- ----- H,. (P0) is positive with 

H , . - i ( p )  >_ H, !r - l ) / r  > 0  f o r a l l p 6 M ,  (15) 

and that 

H l / ( ' - l )  (16) HI > ,._~ 

on M. Moreover, the equality in the above inequalities happens only at umbilical points. 

From (13) we also know that H 7 - H r - i  H,-+l >_ 0, so that 

I4,? 
H,-+t  _< - -  

Hr- I  

This implies, jointly with (15) and (16), that 

HIHr  -- Hr+l "> .Hr (H1 Hr - I  - Hr) 
Hr - I  

I-Ir r/(r-I)  
> (H1Hr- I  - H~_ 1 ) 
- H r - I  

l /(r--I) 
= Hr (HI  - Hr_ j ) > 0, 
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with equality at the umbilical points of  the hypersurface. Jointly with the integral formula 

(14) and the reasoning given after that integral formula finishes the proof of  our result. [] 

Another hypothesis which implies that HI H~ - Hr+l > 0, with equality at the umbilical 

points, is the next one: Hi > 0 for i = 1 . . . . .  r and Hr constant, with r < n - 1. Indeed, 

for each i = 1 . . . . .  r we have the inequalities 

/_//2 __ /_//_1/_/i+l >_> 0,  

with equality at the umbilical points. Since each H/ > 0, this is equivalent to 

. . . . .  H1 > H2 > . >  Hr > Hr+l 

H o -  H~ - - Hr-~ - H~ ' 

with equality at any stage only at umbilical points. That is, H1H~ - H~+ a > 0, with equality 

at the umbilical points. This allows us to state the following consequence. 

Propos i t ion  6. Let~ : M" > S'[ +l C L n + 2 b e a c o m p a c t s p a c e - l i k e h y p e r s u r f a c e i n d e  

Sitter space with Hi > 0 . . . . .  Hr > 0 and constant  Hr, 2 < r < n - 1. Then M"  is a 

totally umbil ical  round sphere. 

In order to state an interesting consequence of  our results, let us introduce the following 
terminology. Let a ¢ L n+e be a unit time-like vector. The intersection of  S~ +l C L "+e and 

the space-like hyperplane {x ~ L n+e : (a,  x) = 0} defines a round n-sphere of  radius 1, 

which is a totally geodesic hypersurface in S~ +1 . We will refer to that sphere as the equator 

of  S~ +l determined by a. This equator divides the de Sitter space into two connected 

components, the future which is given by 

{X E 87+1: (a ,x)  < 0}, 

and the past, given by 

{x ~ S~ +1" ( a , x )  > 01. 

The reason for this terminology is due to the fact that, in the time-orientation of  S~ +1 

determined by a, the subset {x ~ S~+1: (a,  x) < 0} represents the events which are in the 
chronological future of  the equator determined by a. Using this terminology, we may state 
the following result. 

T h e o r e m  7. The only compac t  space-like hypersurfaces in de Sitter space with constant  

rth mean curvature Hr, 2 < r < n, which are contained in the chronological fu ture  (or 

past)  o f  an equator of  $7 +1 are the totally umbil ical  round spheres. 

Proof .  Let us assume, for instance, that the hypersurface ~ : M" ) 87 q-1 C L n+2 is 

contained in the future of the equator determined by a unit time-like vector a E L "+2 (the 
case of  the past is similar), and let us orient M n by the Gauss map N which is in the same 
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time-orientation as a, i.e., (a ,  N) < - 1  < 0. Since the height function (a ,  ~)  is negative 

on M n, by compactness there exists a point Po 6 M where it attains its maximum 

(a, gr(po) ) = maxp~M(a,  ~ ( p ) )  < O. 

Therefore, 

V ( a ,  ~) (Po)  = aT(p0) = 0 (17) 

and from (10), 

V2(a , ~) (p0) (v ,  w) = - ( a ,  ~ ( p o ) ) ( v ,  w) - (a, N(po) ) (Apo(v ) ,  w) < 0 

for all v, u, c TraM. On the other hand, since (a, N) 2 = 1 + (a, 7t) 2 + [arl 2, (17) implies 
that 

- ( a  , N(po)  ) = V/1 + (a , ~(p0) )  2. 

Therefore, choosing {el . . . . .  e,, } as a basis of  principal directions at the point Po we con- 
clude that 

(a ,  ~(P0))  
ki(Po) <_ < 0 

V/1 + (a ,  ~ (p0) )  2 

for each i = 1 . . . . .  n. Thus, when r < n - 1 we are under the hypothesis of  Theorem 5 
and the result follows. 

When r = n, the constant Gauss-Kronecker  curvature H,, = H,, (P0) is positive, so that 
we have, as in the proof of Theorem 5, that all the rth mean curvatures are positive on M" 

and they satisfy 

H, > H~/2 >_... >_ H,I/(I ' - ' )  > H,I/" > O, 

with equality at any stage only at umbilical points. In particular, from (a ,  ~p) < 0, 

H,,-I (a, ~ )  < H,}n-I)/"(a, ~) .  

Integrating now this inequality, and using the first and the last Minkowski formulas, we 

obtain 

f f f..,,, /4,, (a ,  N) dV = Hn i ( a ,  0 )  d g  < t~n ~a, ~O) dV 

M M M 

/ HI (a ,  N) Li(n-l)/n dV, I A  H 

M 

i .e. ,  

f Lll/n. ~ _ (HI - ..,, , (a ,  N)  dV > O, 

M 

with equality if and only if M n is totally umbilical. But Ht >_ H,I/n and then (Hi -- 

/4,1/'1) (a ,  N) _< O, getting the equality and the result. [] 



206 J.A. Aledo et al./ Journal of Geometry and Physics 31 (1999) 195-208 

Appendix A. Another proof of Minkowski formulas 

In this section we will present a more geometric proof of  our Minkowski formulas stated 

in Theorem 2. Let ~ : M n > S~ +t C L n+2 be a compact space-like hypersurface in de 

Sitter space and let a • L n+2 be a fixed arbitrary vector. The gradient of  the height function 

(a,  ~ )  is V(a ,  ~)  = a T, so that from (10) its Laplacian is given by 

A(a ,  ~p) = - n ( a ,  lp) - t r (A)(a ,  N) = - n ( a ,  ~) + n i l ( a ,  N), 

where H = Hi is the mean curvature of  the immersion ~O. Integrating this on M" we have 

that 

f ( - ( a ,  ~p) + N))  = H(a ,  dV O, (A.1) 

M 

which is nothing but the first Minkowski formula. 

Let us consider for t 6 R the parallel hypersurface 7it : M n > S~ +1 C L ''+2, which is 

given by 

~t(P) = exp~(p)(tN(p)) = cosh( t )~ (p)  + sinh(t)N(p),  p ¢ M, 

where ~ denotes the exponential map in S~ +l. Since M" is compact and ~P0 = ~P is 

space-like, there exists e > 0 such that each ~Pt is a space-like hypersurface for Itl < E. 

Since (A. 1) holds for any space-like hypersurface, then for It[ < e we obtain that 

f ( - ( a ,  ~Pt) + Ht(a, Nt))dV, = (A.2) O, 

M 

where Ht is the mean curvature of  ~Pt with respect to the orientation given by its Gauss map 

Nt and dVt is the volume element of  M n with respect to the metric induced by ~Pt and the 

chosen orientation. Our objective now is to compute explicitly the quantities appearing in 

(A.2). A direct calculation gives 

(d~t )p(V)  = d ~ p ( c o s h ( t ) v  - s i nh ( t )Ap (v ) ) ,  (A.3)  

for any p 6 M" and v • TpM, which implies that 

Nt = sinh(t)O + cosh(t)N, 

and 

dVt = coshn(t)P(tanh(t)) dV, 

where 

P(T)  = E ( 1  - kiT) = Hi Ti. 
i=1 i=0 

(A.4) 

(A.5) 
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On the other hand, differentiating (A.4) and using (A.3) we have that 

sinh(t)v - cosh( t )Ap(v)  : - c o s h ( t ) ( A t ) p ( v )  + s inh( t )Ap((At)p(v)) ,  

for any p 6 M" and v ~ TpM, where AI is the shape operator of ~t associated to Nt. This 

implies that if {el . . . . .  en } is a basis of principal directions at the point p for the immersion 

satisfying Ap (el) : ki (p)ei,  then {et . . . . .  en } is also a basis of principal directions at p 

for the immersion ~t satisfying 

(At)p(ei)  : 

In particular, 

tanh(t) - ki (p) 

- 1 -k- ki (p) tanh(t) 
ei. 

1 P ' ( tanh( t ) )  + n P(tanh(t))  cosh(t) sinh(t) 
//i = - -  tr(A,) = (A.6) 

n n P (tanh(t)) cosh 2 (t) 

Using (A.4)-(A.6) and the definition of 41, Eq. (A.2) becomes equivalent to 

~-~(,,-i)(;)tanhi(t) f(-Hi(a,Tt)+Hi+~(a,N))dV=O, 
i :0  M 

which is a polynomial equation in the variable tanh(t) vanishing for all It[ < e. Therefore, 

all its coefficients must vanish, and these coefficients are, up to a constant, precisely 

f ( - H i ( a , ~ t )  i = 0  - 1. + H i + l ( a , N ) ) d V ,  i t  

M 
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